If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+6X-134=0
a = 1; b = 6; c = -134;
Δ = b2-4ac
Δ = 62-4·1·(-134)
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{143}}{2*1}=\frac{-6-2\sqrt{143}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{143}}{2*1}=\frac{-6+2\sqrt{143}}{2} $
| 5x^2−17x+19=2x^2 | | 4x-10+7x-5=360 | | 4x-10+7x-5=180 | | M=26.8-6.8+m | | 7y-6=15-2y | | 6(2x-1)-5=25 | | F(x)=2/5(5)+8= | | F(x)=2/5(3)+8 | | F(x)=2/5(0)+8= | | 5x–7=2(x+1) | | F(x)=2/5(-1)+8 | | (2×n)+10=12 | | 213+21k=-13 | | 3y+6=60° | | F(x)=2/5(-5)+5 | | 14-2x=-8. | | 8(x+2)-16=160 | | -40=5/9x | | 44n=-11 | | -40=5/9n | | 2.8=-3x^+7x-38.9 | | –12+p=18 | | 2–7g=54 | | 13x+12=12x-4 | | 12/2=z+10/12 | | 5(x2)+2x=7(x+4)-38 | | 0.75(p+12)=1/2(p-6) | | x+2/14=1/7+x+6/4 | | 6x+1720=3x+122 | | 4x-12-2x=2 | | X-5/2-x-4/3=x-3/2+x+2 | | x+(x+15)=30 |